Cosmological formation of slowly rotating massive elliptical galaxies

Thorsten Naab with ATLAS^{3D}

MPA

L. Oser, M.Hilz, E. Emsellem, M. Cappellari, D. Krajnovic, R. M. McDermid, N. Scott, P. Serra, G. A. Verdoes Kleijn, L. M. Young, K. Alatalo, R. Bacon, L. Blitz, M. Bois, F. Bournaud, M. Bureau, R. L. Davies, T. A. Davis, P. T. de Zeeuw, S. Khochfar, H. Kuntschner, P.-Y. Lablanche, R. Morganti, T. Oosterloo, M. Sarzi, A.-M. Weijmanns

Santa Cruz, August 2011

ATLAS^{3D} - sample

- \circ Multi-wavelength survey of 260 (parent sample of 871) nearby red-sequence early-type galaxies, D < 42 Mpc, $M_{\rm K}$ < -21.5, M_* > 6•10 $^9 M_{\odot}$
- Selected visually based on morphology, absence of spiral features and dust lanes
- \circ Radio, millimeter, optical imaging and two-dimensional kinematics of atomic (HI), molecular (CO), and ionized gas (H β , [OIII], [NI]), kinematics and populations of stars (H β , Fe5015, Mg b)
- Accompanied by semi-analytical modeling, merger simulation and cosmological simulations
- First statistically complete survey with detailed 2D kinematical and photometric information and complete inventory of baryon budget
- Papers on sample (Cappellari et al.), kinematic analysis (Krajnovic et al.), angular momentum (Emsellem et al.), molecular gas content (Young et al.), CO Tully-Fisher relation (Davis et al.), AGN driven outflow (Alatalo et al.), Binary mergers (Bois et al.), Semi-analytical models (Khochfar et al.), and much more...

ATLAS^{3D} - sample

o Slow rotators (36/260), mostly round

ATLAS^{3D} I: Cappellari, Emsellem, Krajnovic, Mc Dermid et al. 2011

ATLAS^{3D} - sample

NGC3230	NGC4684	NGC4255	UGC09519	• NGC6547	NGC3245	NGC5342	NGC4546
			× .	1			
SO .	so	so	so	so	so	so	so
NGC4281	NGC4111	NGC4350	- NGC5308	NGC2974	NGC3156	NGC3530	- NGC4638
SO	so	so •	so	E	so	S0/0	so
NGC3630	NGC2764	NGC4452	NGC0936	NGC0516	NGC1266	PGC042549	NGC3400
					. 🔎 :		
SO	. so	SO	SO	SO	SO	E	Sa
NGC4710	NGC3626	NGC3098	NGC1665	NGC2481	NGC3838	NGC2685	NGC6010 -
•		-					-
SO.	SO	SO	S0 .	S0/q	S0/a	SO	SO/a
NGC5854	NGC4521	NGC4036	IC0560	NGC3648	NGC5611	NGC2577	NGC1121
• S0	* S0/o	. SO	:/ so	SO .	SO	SO	so
NGC5379	IC1024	NGC4119	NGC4762	IC0598	NGC5493	PGC016060	NGC5475
						1	
	50	50	so	50/0	50	so	50

 $_{\odot}$ Fast rotators (224/260), some pretty flat

ATLAS^{3D} I: Cappellari, Emsellem, Krajnovic, Mc Dermid et al. 2011

The SAURON - survey

- Integral field spectroscopy of 48 elliptical and lenticular galaxies
 (Bacon et al. 2001, de Zeeuw et al. 2002, Emsellem et al. 2004, Cappellari et al. 2006)
- Wealth of kinematic features like KDCs, KT, twosigma dispersion profiles
- $_{\odot}$ Early-type galaxies are fast rotators ($\lambda_{\rm R}{>}0.1)$ or slow rotators ($\lambda_{\rm R}{<}0.1)$

$$\lambda_{\rm R} = \frac{\langle R|V|\rangle}{\langle R\sqrt{V^2 + \sigma^2}\rangle}$$

ATLAS^{3D} – kinematical analysis

 \circ Most massive early-type galaxies tend to be round and slow rotators

 $_{\odot}$ Division line between slow rotators and fast rotators is 0.31 • $\sqrt{\epsilon}$

ATLAS^{3D} III: Emsellem et al. 2011

ATLAS^{3D} – kinematical analysis

- $_{\odot}$ Most galaxies have (214, 82%) regular velocity fields, 44% show non-regular rotation (dense environments, massive), KDCs (7%), 2 σ (4%)
- Bars & rings (30%), dust structures (16%), blue nuclear colors (6%), interaction (8%)
- \circ 90% have aligned (Ψ < 5°) photometric and kinematic major axes (axisymmetric), rest is misaligned within r_e (10%) and triaxial

Binary mergers of disks

- Velocity fields of disk merger remnants resemble observed velocity fields
- \circ Kinematic misalignment, CRCs, KDCs, 2σ , regular rotation
- Only 1:1 and 2:1 remnants show irregular features

Model	Comment	<i>i</i> 1	<i>i</i> 2	ω_1	ω_2
11C1	High σ by counter-rotation	0	0	180	0
11C3	Regular rotation	0	0	71	-30
11C5	Low rotation	-109	-60	180	0
11C8	Surface-density change	-109	-60	71	90
11C12	Kinematic misalignment	-109	0	71	90
31C6	Regular rotation	-109	-60	71	30
11S2	Low σ ring	0	0	71	30
11S6	CRC in stars	-109	-60	71	30
11GS4	σ double peak	-109	-60	71	30
11GS9	Polar ring	-109	0	180	0
11GS16	CRC in gas	-109	60	71	90
31GS19	σ dumbbell	0	0	71	-30

Jesseit, Naab, Peletier & Burkert 2007

Lambda & binary mergers

Merger simulations including star formation

In the idealized world: mass ratio is the decisive factor for slow/fast rotators Re-mergers can make slow rotators

Rotation in merger remnants

- Equal-mass merger remnants can produce slow rotators
- Slow rotators eventually too flattened
- O Upper envelope of fast rotators cannot be explained with major mergers
- Re-mergers do not consistently form slow rotators and destroy KDCs
- Weighted with reasonable probabilities, 1:1 - 6:1 disk mergers cannot account for all early-type galaxies

Size, mass (distribution) and velocity dispersion.....

The binary merger-tree

The bulk of the stars in present day elliptical galaxies cannot originate from major mergers of present day disk galaxies or major mergers of their progenitors (e.g. Naab & Ostriker 2009, and references therein) The two phases of galaxy formation

 Typical contribution of mergers (> 1:4) in massive galaxies since z=2 is 30% -40%

Hirschmann et al. 2011

Gallery of cosmological-simulations

Gallery of cosmological-simulations

Profiles

 \checkmark Profiles are in qualitative and quantitative agreement with observations

Correlations with $\lambda_{\rm R}$

 \checkmark More massive systems are slower rotators

Correlations with λ_R : theory

✓ Galaxies with most minor mergers are slow rotators, major mergers do not matter!

Size and dispersion evolution since $z \approx 2$

- $\begin{array}{ll} \circ & \mbox{Size evolution for massive early-type} \\ & \mbox{galaxies proportional to } (1+z)^{\alpha}, \, \alpha \mbox{=-}1.22 \\ & \mbox{(Franx et al. 2008)}, \, -1.48 \mbox{(Buitrago et al. 2008)}, \\ & \mbox{-}1.17 \mbox{(Williams et al. 2010)} \end{array}$
- Mild evolution of $\approx 10^{11} M_{\odot}$ ellipticals from 240km/s at z ≈ 1.6 (240km/s) to 180 km/s at z=0 (Cenarro & Trujillo 2009) from stacked spectra of 11 GMASS ellipticals (Cimatti et al. 2008)
- Add large galaxies to the population: faded spirals?
 - Grow the population by major/minor mergers, expansion and other effects (e.g. Fan et al.)? Minor mergers are favored (Bezanzon et al. 2009, Hopkins et al. 09/10, Naab et al. 2009, Oser et al. 2010/2011)

Minor mergers and the virial theorem

 $M_f = (1+\eta)^* M_i$ and assume $\eta=1$, e.g. mass increase by factor two, and varying dispersions...

$$\frac{\langle v_f^2 \rangle}{\langle v_i^2 \rangle} = \frac{(1+\eta\epsilon)}{1+\eta}$$
$$\frac{r_{g,f}}{r_{g,i}} = \frac{(1+\eta)^2}{(1+\eta\epsilon)}$$
$$\frac{\rho_f}{\rho_i} = \frac{(1+\eta\epsilon)^3}{(1+\eta)^5}$$

$$\eta = M_a / M_i$$

$$\epsilon = \langle v_a^2 \rangle / \langle v_i^2 \rangle$$

Dispersion can decrease by factor 2

Radius can increase by factor 4

Density can decrease by factor 32

 $r \sim M^{\alpha}$, $\alpha = 1$ for major mergers, $\alpha = 2$ for minor mergers more complex: gas, dark matter, dynamics, cosmology

e.g. Cole et al. 2000; Naab, Johansson & Ostriker 2009; Bezanson et al. 2009

by stellar accretion – energy conserving process

Isolated 1:1 (mm) and 10:1 (acc) mergers of spheroidal galaxies without (1C) and with (2C) dark matter
 Only minor mergers with dark matter result in inside-out growth

Hilz et al. 2011, in prep.

Isolated 1:1 (mm), 5:1, and 10:1 (acc) mergers of spheroidal galaxies without (1C) and with (2C) dark matter
Only minor mergers with! dark matter result in inside-out growth

Merger dynamics

 Violent relaxation – in major mergers - scatters particles in energy space to more bound and less bound – change in homology
 Additional strong effect of stripping in minor mergers

Surface density profiles...

 \circ Minor mergers with dark matter can rapidly increase the Sersic index

 Rapid size evolution and the simultaneous evolution in Sersic index can be explained by minor mergers of galaxies surrounded by massive dark matter halos
 Hilz et al. 2011, in prep.